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The National Ignition Facility (NIF) is currently a 192 beam, 1.3 MJ
laser

This spring we performed the first materials
experiments on the NIF, establishing NIF as a
uniquely-capable platform for a new regime of

extreme-compression science.
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Matter at very extreme densities and temperatures is quite
common in our universe

|
Earth: central pressures ~3.6 Mbar and Jupiter: central pressures ~77 Mbar and
temperatures ~6000 K temperatures ~16000 K

Insulating
H,and He

‘Rocky Si}icate Mantle

Core \ +
Material Metallic H?

(and He, He*
\'& or He'*)
¥

BPM 37093, a white dwarf star with a solid
carbon core

Neptune: central pressures 8 Mbar and
temperatures ~5000 K

Rocks, diamond

“BPM 37093: A seismological test of crystallization
theory in white dwarfs”
Kanaan, et al., A&A (2005)

C. Hamilton
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We are considering pressures approaching the

atomic unit of pressure (1 Hartree / cubic Bohr radius)
-]

Date Atomic unit Discoverer | Capability/implication

1880

Energy E =me*/h*=272eV Rydberg spectroscopy

¢ =>quantum mechanics

1900 Mass m,=9.110107" kg Thomson mass spectrometry

Charge ¢=1.60107"C Millikan oil drop
1920 =>atoms are divisible

Length a,=#h"/me’ =.0529nm |Bragg diffraction

=>crystal structure

1940
1960
1980 Krausz attosecond spectroscopy

Time t=h/E =27e108 =>observe electron bonding

h
2000 i
_ 3 _ undamental change in matter

Pressure P=E,/a =294Mbar | NIF from KeV chemistry to macro-

2020 quantized states
] ] ] ] ] D. Hicks
The atomic unit of pressure is the pressure required to “seriously
disrupt the shell structure of atoms” (Bukowinski,1994) UL-
4
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At least 573 exo-planets, including 144 transiting planets have

been observed and confirmed

"As of Aug. 11, 2011 -- http://exoplanet.eu/
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@ Transiting Exo-Planets
4 Solar System %

Currently accessible
on NIF

Kepl9—1 19

Radius (Rg)

Exo-Planet Period (days)

— 100
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Central pressures are interpolated, undifferentiated
compositions and underestimate results for

differentiated interior models.
Swift, et al. (2011)

— 1000

(Jegn) a4nssald [esaus)

Heavy detection biases favor large
Masses and Radii and small Orbits.

~7 rocky or metallic “super earths”
~2 “water worlds”
~6-9 “icy giants”

Central pressure estimates require
an interior model and material EOSs

Material properties are needed at
10-1000 Mbar
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Just a few years ago, ultra-high pressure phase diagrams for
materials were very “simple”

Melt curves followed a Lindeman law, structures were
simple, and conductivities increased at high pressure
900
_ Lithium
3
=
=
o
o 500
o
5
=
100 5 :
.001 0.1 1 10
Pressure (Mbar)

Physics
Gets
Simple!
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Recent observations find complex high-pressure behavior

600 - .

me, Nature Phys. (2011) L 2000 Marqués, PRB (2011)’ ' T » i
Lithium Lid T _
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Melt curves and structures are experimentally
very complex for alkall metals.
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New experiments and theories point out surprising and decidedly
complex behavior at the highest pressures considered.

Traditional view: All materials become simple at high pressure appears to be incorrect!

“ .. what the present results most assuredly demonstrate is the importance of pressure in
revealing the limitations of previously hallowed models of solids”
—Neil Ashcroft (2009).

FCC,65GPa cl16,108 GPa  oP8,119GPa 119,147 GPa

@ 5325 %, .-t [Incommensurate hP4, 190 GPa
& ) ]J N AR AL Insulating,
%T ]) - Zé J % J | @ \O' | Transparent Electride

i Tlfﬂ [0 & f'@“ 7

220 GPa —
260 GPa (b)
o5 | 340 GPa ,

420 GPa

€2
o

Gatti, PRL (2010)  ©©V) 1206Pa 196 GPa 199GP2 Ma, Nature (2009)ll|
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High pressures phases of aluminum are also predicted to be

complex

Pickard and Needs, Nature Materials (2010). i\
:t;j:e
4+ 1 —— Simple hexagonal
Host-Guest structure of ~ — Holian
Ba-|Va § Lomonosov
(Incommensurate °“; 3F
Electride) 3
32-88 Mbar B
Vis 2.8% <bcc @ 5 TPa
o 5 2®a & a®
@QQ. O“ﬁ% -9@&9 9%@ Vis 5.6% <bcc @ 10 TPa
0.8 o o % o
E w .&’ % 1 | | | | | | | |
z‘&om:&o@a 1 2 3 4 5 6 7 8 9 10
0™ g . o e o Q Pressure (TPa)
£ 7% 0 7% 0
%®e oy 4% o*,  Simple Hexagonal CMMA
025 D O, 3%, O, s° Electride Electride
— A1 1< _O“ﬁ’g «ﬁ*% Oa’,g ch 88 — 100 Mbar > 100 Mbar
— A2 D #e e %}? & 20 © »
| S ] pe¥ - ¥e®.T®, o
— sh o\ D : @
S <©® o ()
3 015 ] i @ ¥
g = ; °
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8 ©
No predictions yet
005 f P It li ‘; “all structures near 300
or me t_ ine o Mbar are far from close
0003 1 -20 ' 1I 0 0 al uminum packed”
Energy (eV)
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Fundamental Quantum-Mechanical driving forces appear to be
responsible for this complexity at extreme compression

Hard-sphere potential with Pauli exclusion and orthogonal wave functions

-3?.
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Increasing Compression

“When the cores are induced to occupy an increasingly larger fraction of the unit cell the

indications are that a new paradigm, as suggested here, may be appropriate.”
--Rousseau and Ashcroft, PRL (2008) UL-
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A new paradigm. Really?

_ The Structure of
Are we really about to withess a true Scientific Revolutions

paradigm shift in extreme compressed- o e
matter physics? Thomas S. Kuhn

“Only as experiment and tentative theory
are together articulated to a match does
the discovery emerge and the theory
become a paradigm”

—p 61

“Further development ordinarily calls for
the construction of elaborate equipment,
the development of an esoteric
vocabulary and skills, and a refinement
of concepts. . ..”

—p 64
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Where on earth do we have the “elaborate equipment” to study
these emerging material states?

L i,
High — Yz SO MG TIN00)

explosive ™




Only at the NIF

Developing a new paradigm for
Extreme Compression Science




NIF Ramp-Compression Experiments have already made the
relevant exo-planet pressure range from 1 to 50 Mbar accessible.

This Spring we performed a series of experiments on
the National Ignition Facilty

II| | | IIIIII| | IIIIIII| | N N I |
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Our NIF experiments have demonstrated that we can access the relevant
pressure composition region for exo-planet interiors. UL—
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Laser-driven ramp-
compression EOS
experiments

L
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VISAR—Velocity Interferometer System for Any Reflector
Is our primary diagnostic

W
Imaging line- W

VISAR system Z,
gives phase shift
(velocity) versus

position

VISAR
waresn - (Measures Doppler Shift)

Streak
Camera

S T T

700

600 —

Distance (um)
T

400 —

10 2 30 40
Time (ns)
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Under ramp loading, EOS (stress-density) can be determined from
free-surface velocity measurements

|
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I
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Design constraints:

s No reverberation
: and no shock

Shock

Lagrangian

Position UL.
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Nano-crystalline
diamond EOS on NIF

L
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We studied the stress-density of solid diamond on the NIF
-

Reseachers: Ray Smith, Jon Eggert, Dave
Braun (LLNL), Raymond Jeanloz (UCB), < 1.2- . .
Tom Duffy and Jue Wang (Princeton) E EquISlte control
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3 o8 350 kJ shape is critical
g 061 to success
o 0.4-
3
S 024
0'0_ | L L L L L 'LI
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=
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In addition to the higher energy afforded by NIF, pulse shaping

was key to achieving higher pressure

Pulse Shape evolution for diamond
ramp experiments

Requested vs delivered pulse shapes

for ramp experiments
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S
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Time (ns)
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We use an lterative Lagrangian Analysis to extract stress and
density (Rothman, et al., (2005)

’ Nano'c\roum Au Stepped
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. s
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Ramp-compression EOS of nano-crystalline diamond to 50 Mbar.
-]
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Vapor-deposited
tantalum EOS on NIF

L
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NIF: Vapor-deposited tantalum targets

10000.00pm

40 ym Diamond
65, 85, 95, 75 ym Tantalum
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Unlike diamond shock initiation begins in tantalum at 3.4 Mbar,

independent of pressure-drive

] L 304  — N110310 -
3 Variation of pressure ] __ Ni10s10
§ drive (stressrate)is £ o5 — N119520
much larger than was I /
needed for diamond. 3 20-
% ]
Repeated shock 2 137
initiation at ~ 3.4 2 ﬂ \
. . - 10 #
g Mbar with only minor 3 | /
dependence on P o5 /
sample thickness and } ﬁ /
drive profile. o
0 5 10 15 20 25
N bl Time(8) i o,
8 {f 600
] - 500
% | — N1103108 80.35 ym 5400
E 6-| — N110510880.71 um C
& Rl z?gzz:/ i
u g : g 7 o L
um 82.39 um R
VISAR A 52;35 3:1'77 VISAR A i 3 / /’)/ . -
£ i
These results strongly suggest a I 7,.2 L 100
. . .ys L2 w
constitutive (e.g. phase transition) rather A I
than a hydrodynamic driver for the shock. | | || L -
IARRRRRRRRRRR) ILAARARAR LR RARA ILARRA RN ILAARA AR AR 3’2T -
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Even with the shock, we extract the sound speed and stress-
density for multiple shots

Excellent agreement with previous data from Z and Omega

_|||||||||.|||||||||.||||I||||
—~ 16; — N110528
& E — NIF Avg
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3 104
w 3
< 3
o 8-
c 3
o E
LI
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0

Free Surface Velocity (km/s)

These experiments deliver important information about the stress-strain
relation of materials, but we also need more direct measurements.

8
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Powder x-ray
diffraction of rolled
tantalum on the
Omega laser

ACS, Denver: Novel chemistry at the National Ignition Facility
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We performed high-pressure x-ray diffraction on tantalum at the
Omega laser

B T e e REran :‘ T =

561261

4.3 Mbar

Drive
Diamond

Diffraction data quality is
roughly where DAC diffraction
was in the ‘80s. We need to
make similar strides.

ACS, Denver: Nov«.i,, 2 o




We determine stress by backward integration of diamond free-
surface velocity

Shot 61261,
OMEGA 2011-0223

Target: C[17]Ta[3]C
[40], BL: Fe

Drive
Diamond

Ramp drive: 246 J
(tg. = 4.6 ns)
P = 4.34+0.09 Mbar
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We have measured the (assumed) BCC density for 8 shots.
-

é ® Hugoniot E

600§ —NFAvyg ' E

3 @ XRD(BCC : 3
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&D_/ 400 —g """""" E_
7 E 3
o 300 @Y O E
» = -
= Shock formation [
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20 25 30 35
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Stress (GPa)

Diffraction for S61261 can be interpreted as two phase
coexistence

S61261 At
L

4.3 Mbar SESI

AR ¥
i

3

é ® Hugoniot ;
600 3 NIF Avg B

3 @ XRD (BCC %
>00 _ = A consistent understanding of both
400 3 = the NIF EOS and the Omega
300 E = diffraction data can be had by

: = positing a Ta phase transition near
200 E = 3.4 Mbar.
100 =

E - e.g. Burakovski (2010) predict w-

0 E

h Izol - |25| h I3o| h |35| o phase. UL—
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Stress (GPa)

We can also determine density assuming t

Bk

o Yolua
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Extended X-ray
Absorption Fine

Structure (EXAFS) at
the Omega Laser

L.
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Experimental design for EXAFS is very similar to difraction

White Implosion
light Backlighter

AN

<

X-ray absorption
spectrum

Diamond Fe Diamond

L
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Backlighter characteristics

Omega experimental setup for EXAFS

Visar mirror

Driver beams

Spherical implosion as x-
ray backlighter

Shielding cone

Fluence (keV/keV)

1 1

L L ]
4.5 5.0 5.5 6.0 6.5 7.0
Photon energy (keV)

Visar probe

L
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EXAFS data is sensitive to short-range structure, density, and
temperature

0.08 | , |

EXAFS undriven data
0.06 - FEFF fit B

0.04
0.02

x-ray absorption, .(E)x

-0.02
-0.04

-0.06 | . . . . .
0.08 | |

006 L EXAFS driven data

FEFF fit

0.04
EXAFS is sensitive to 0.02
temperature through the = 0
Debye-Waller factor (DWF) 0.02

-0.04
-0.06

k (A1) UL_
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EXAFS offers a temperature probe in multi-shocked iron.
BCC phase has not been observed.

7000
6000 "J
LIQUID
5000
_ 4000 F}—ﬂ
3
-

3000 il +
‘/T /+/ ¢ Multi-shock

2000 s B Single-shock -
% ~¢=Fe hugoniot

1000 - l —=hcc boundary, Belonoshko, []

—=Tmelt(K) 2003

0 u T
50 100 150 200 250 300 350

P (GPa)

1 1 I

This is the first data set at Earth core conditions.

L

ACS, Denver: Novel chemistry at the National Ignition Facility 3



Wide variety of
upcoming
experiments

& .
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Diffraction on NIF

Recent metadynamics survey of carbon proposed a dynamic
pathway among multiple phases

Carbon Phase Space

—— Correa et al 2006
= \Wang et al 2005 |
= = Grumbach and Martin 1996

- Kinetic transitions
from this work

BC8

.-

Metastable
Phases?

De-compress,

. 4 1O
A 29~ X
22 oe®
p
" eg%a
. Diand(C8) Goﬁ\\gea\

O 20,
Possible path to a new o ¢
high-strength material, . & &
Metastable BC8 carbon! v T+
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Hydrogen
"""We have tracked shocks in D, at 30 Mbar pressures on NIF.

We plan to measure the stress-strain of those states.

Uncovered light Shock
shield cone impacts
cone
Cone s
aperture

4th wave shows continuous
acceleration from 105 to 146 km/s
(~3 TPa ,30 Mbar).

=)
1S3
|

(83
o

‘l‘ull!l!l!\!l‘!‘JJlJJv

Shock Velocity ( km/s)

18.0 185 19.0 195 20.0

Time (ns)

Time (ns)

NIC Shock —Timing Work-in-progress with T.R. Boehly, H.F. Robey, J.H

Eggert, D.G. Hicks, R.F. Smith, G.W. Collins and many others “I
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Gbar EOS
On Omega, we have developed a platform that will allow Gbar

pressures on NIF

|
Liquid D,—filled ~. | 10000
NIF capsule " ‘ﬁ- ! \\L
1000\
® "
< AT \
; 100 ,f \\ﬁ\ R 35
S 'l : '*—- =S \I.g_,_,__':‘_’"-r "
: , il N
| -‘J N
1 1 ] ‘..l.l..lb "HM“ 5

0 200 400 600 800 1000

Streaked

i Position (um
Radiograph (pm)

Radiographic probe of density as
well as shock velocity

time UL-
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Gbar EOS

NIF convergent ablator experiments lead to Gbar EOS platform on

NIF
I ———————

Velocity vs Radius

Backlit D-*He-filled capsule or THD 340

Cryo-layered capsule 320 F
300 F

280

oy

100 200 300 400 500 600
Radius, C of M (um)

Gated 9 keV X-ray radiography

Velocity, C of M (um/ns)

1 > Capsule Density vs Radius
. Imaging - 20 ) i )
slits =

- 15F

10

Peak density (g/cc)

5-

R (um)
Technique measures radius, velocity, 0 ; . : .
pR, and mass of ablator 100 200 300 400 500 600

Damien Hicks, Converging Ablator Radius, G of M {um) "I

ACS, Denver: Novel chemistry at the National Ignition Facility

42



Abouti30% ofiNIEssicapacityiwas needed to
reachis0iVibar, on ramped diamond; and
about % @i capamty ‘to reach OiMbariingllass

We coniilE to develop experllmental
technigues tojprobeithese material states:i
£
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